The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We propose and analyse a abstract framework for augmented mixed formulations.
We give error estimate in the general case: conforming and
nonconforming approximations with or without numerical integration.
Finally, error estimator is given. An example of stabilized
formulation for Stokes problem is analysed.
This paper deals with the solution of problems involving partial differential
equations in . For three dimensional case, methods are useful if they
require neither domain boundary regularity nor regularity for the exact solution of
the problem. A new domain decomposition method is therefore presented which
uses low degree finite elements. The numerical approximation of the
solution is easy, and optimal error bounds are obtained according to suitable
norms.
Download Results (CSV)