We show that the number of derivatives of a non negative 2-order symbol needed to establish the classical Fefferman-Phong inequality is bounded by improving thus the bound obtained recently by N. Lerner and Y. Morimoto. In the case of symbols of type , we show that this number is bounded by ; more precisely, for a non negative symbol , the Fefferman-Phong inequality holds if are bounded for, roughly, . To obtain such results and others, we first prove an abstract result which says that...
We are interested in an optimal shape design formulation for a class of free boundary problems of Bernoulli type. We show the existence of the optimal solution of this problem by proving continuity of the solution of the state problem with respect to the domain. The main tools in establishing such a continuity are a result concerning uniform continuity of the trace operator with respect to the domain and a recent result on the uniform Poincaré inequality for variable domains.
Download Results (CSV)