The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Let denote the set of element orders of a finite group . If is a finite non-abelian simple group and implies contains a unique non-abelian composition factor isomorphic to , then is called quasirecognizable by the set of its element orders. In this paper we will prove that the group is quasirecognizable.
Download Results (CSV)