The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 10 of 10

Showing per page

Order by Relevance | Title | Year of publication

On locally solid topological lattice groups

Abdul Rahim KhanKeith Rowlands — 2007

Czechoslovak Mathematical Journal

Let ( G , τ ) be a commutative Hausdorff locally solid lattice group. In this paper we prove the following: (1) If ( G , τ ) has the A (iii)-property, then its completion ( G ^ , τ ^ ) is an order-complete locally solid lattice group. (2) If G is order-complete and τ has the Fatou property, then the order intervals of G are τ -complete. (3) If ( G , τ ) has the Fatou property, then G is order-dense in G ^ and ( G ^ , τ ^ ) has the Fatou property. (4) The order-bound topology on any commutative lattice group is the finest locally solid topology on...

Page 1

Download Results (CSV)