Using a one-dimensional hierarchical model based on the Cosserat theory approach to fluid dynamics we can reduce the full 3D system of equations for the axisymmetric unsteady motion of a non-Newtonian incompressible second-grade viscous fluid to a system of equations depending on time and on a single spatial variable. From this new system we obtain the steady relationship between average pressure gradient and volume flow rate over a finite section of a straight constricted tube, and the corresponding...
In this paper we apply a domain decomposition method to approach the solution of a non-Newtonian viscoelastic Oldroyd-B model. The numerical scheme is based on a fixed-point argument applied to the original non-linear system of partial differential equations decoupled into a Navier-Stokes system and a tensorial transport equation. Using a modified Schwarz algorithm, involving block preconditioners for the Navier-Stokes equations, the decoupled problems are solved iteratively. Numerical simulations...
Experimental evidence collected over the years shows that blood exhibits non-Newtonian characteristics such as shear-thinning, viscoelasticity, yield stress and thixotropic behaviour. Under certain conditions these characteristics become relevant and must be taken into consideration when modelling blood flow. In this work we deal with incompressible generalized Newtonian fluids, that account for the non-constant viscosity of blood, and present a new numerical method to handle fluid-rigid body interaction...
Download Results (CSV)