The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
There are necessary conditions for a point x from the unit sphere to be a denting point of the unit ball of Orlicz spaces equipped with the Orlicz norm generated by arbitrary Orlicz functions. In contrast to results in [12, 17, 16], we present also examples of Orlicz spaces in which strongly extreme points of the unit ball are not denting points.
We introduce the notion of the modulus of dentability defined for any point of the unit sphere S(X) of a Banach space X. We calculate effectively this modulus for denting points of the unit ball of the classical interpolation space Moreover, a criterion for denting points of the unit ball in this space is given. We also show that none of denting points of the unit ball of is a LUR-point. Consequently, the set of LUR-points of the unit ball of is empty.
Download Results (CSV)