Currently displaying 1 – 1 of 1

Showing per page

Order by Relevance | Title | Year of publication

Interpretable random forest model for identification of edge 3-uncolorable cubic graphs

Adam DudášBianka Modrovičová — 2023

Kybernetika

Random forest is an ensemble method of machine learning that reaches a high level of accuracy in decision-making but is difficult to understand from the point of view of interpreting local or global decisions. In the article, we use this method as a means to analyze the edge 3-colorability of cubic graphs and to find the properties of the graphs that affect it most strongly. The main contributions of the presented research are four original datasets suitable for machine learning methods, a random...

Page 1

Download Results (CSV)