In the note we are concerned with higher regularity and uniqueness of solutions to the stationary problem arising from the large eddy simulation of turbulent flows. The system of equations contains a nonlocal nonlinear term, which prevents straightforward application of a difference quotients method. The existence of weak solutions was shown in A. Świerczewska: Large eddy simulation. Existence of stationary solutions to the dynamical model, ZAMM, Z. Angew. Math. Mech. 85 (2005), 593–604 and P....
We consider an abstract parabolic problem in a framework of maximal monotone graphs, possibly multi-valued, with growth conditions formulated with the help of an x-dependent N-function. The main novelty of the paper consists in the lack of any growth restrictions on the N-function combined with its anisotropic character, namely we allow the dependence on all the directions of the gradient, not only on its absolute value. This leads to using the notion of modular convergence and studying in detail...
We study the uniqueness and L¹-stability of the Cauchy problem for a 2 × 2 system coming from the theory of granular media [9,10]. We work in a class of weak entropy solutions. The appearance of a multifunction in a source term, given by the Coulomb-Mohr friction law, requires a modification of definition of the weak entropy solution [5,6].
The paper concerns uniqueness of weak solutions to non-Newtonian fluids with nonstandard growth conditions for the Cauchy stress tensor. We recall the results on existence of weak solutions and additionally provide the proof of existence of measure-valued solutions. Motivated by the fluids of strongly inhomogeneous behaviour and having the property of rapid shear thickening we observe that the described situation cannot be captured by power-law-type rheology. We describe the growth conditions with...
Download Results (CSV)