Jacobi matrices on trees
Symmetric Jacobi matrices on one sided homogeneous trees are studied. Essential selfadjointness of these matrices turns out to depend on the structure of the tree. If a tree has one end and infinitely many origin points the matrix is always essentially selfadjoint independently of the growth of its coefficients. In case a tree has one origin and infinitely many ends, the essential selfadjointness is equivalent to that of an ordinary Jacobi matrix obtained by restriction to the so called radial functions....