The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We consider the stochastic differential equation
,
where , , are nonrandom continuous functions of t, X₀ is an initial random variable, is a Gaussian process and X₀, Y are independent. We give the form of the solution () to (0.1) and then basing on the results of Plucińska [Teor. Veroyatnost. i Primenen. 25 (1980)] we prove that () is a quasi-diffusion proces.
Download Results (CSV)