Singular M-matrices which may not have a nonnegative generalized inverse
A matrix A ∈ ℝn×n is a GM-matrix if A = sI − B, where 0 < ρ(B) ≤ s and B ∈WPFn i.e., both B and Bt have ρ(B) as their eigenvalues and their corresponding eigenvector is entry wise nonnegative. In this article, we consider a generalization of a subclass of GM-matrices having a nonnegative core nilpotent decomposition and prove a characterization result for such matrices. Also, we study various notions of splitting of matrices from this new class and obtain sufficient conditions for their convergence....