The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 3 of 3

Showing per page

Order by Relevance | Title | Year of publication

Extension of several sufficient conditions for Hamiltonian graphs

Ahmed Ainouche — 2006

Discussiones Mathematicae Graph Theory

Let G be a 2-connected graph of order n. Suppose that for all 3-independent sets X in G, there exists a vertex u in X such that |N(X∖u)|+d(u) ≥ n-1. Using the concept of dual closure, we prove that 1. G is hamiltonian if and only if its 0-dual closure is either complete or the cycle C₇ 2. G is nonhamiltonian if and only if its 0-dual closure is either the graph ( K r K K ) K , 1 ≤ r ≤ s ≤ t or the graph ( ( n + 1 ) / 2 ) K K ( n - 1 ) / 2 . It follows that it takes a polynomial time to check the hamiltonicity or the nonhamiltonicity of a graph...

Variations on a sufficient condition for Hamiltonian graphs

Ahmed AinoucheSerge Lapiquonne — 2007

Discussiones Mathematicae Graph Theory

Given a 2-connected graph G on n vertices, let G* be its partially square graph, obtained by adding edges uv whenever the vertices u,v have a common neighbor x satisfying the condition N G ( x ) N G [ u ] N G [ v ] , where N G [ x ] = N G ( x ) x . In particular, this condition is satisfied if x does not center a claw (an induced K 1 , 3 ). Clearly G ⊆ G* ⊆ G², where G² is the square of G. For any independent triple X = x,y,z we define σ̅(X) = d(x) + d(y) + d(z) - |N(x) ∩ N(y) ∩ N(z)|. Flandrin et al. proved that a 2-connected graph G is hamiltonian if...

Page 1

Download Results (CSV)