Let G be a 2-connected graph of order n. Suppose that for all 3-independent sets X in G, there exists a vertex u in X such that |N(X∖u)|+d(u) ≥ n-1. Using the concept of dual closure, we prove that
1. G is hamiltonian if and only if its 0-dual closure is either complete or the cycle C₇
2. G is nonhamiltonian if and only if its 0-dual closure is either the graph , 1 ≤ r ≤ s ≤ t or the graph .
It follows that it takes a polynomial time to check the hamiltonicity or the nonhamiltonicity of a graph...
Given a 2-connected graph G on n vertices, let G* be its partially square graph, obtained by adding edges uv whenever the vertices u,v have a common neighbor x satisfying the condition , where . In particular, this condition is satisfied if x does not center a claw (an induced ). Clearly G ⊆ G* ⊆ G², where G² is the square of G. For any independent triple X = x,y,z we define
σ̅(X) = d(x) + d(y) + d(z) - |N(x) ∩ N(y) ∩ N(z)|.
Flandrin et al. proved that a 2-connected graph G is hamiltonian if...
Download Results (CSV)