Ascent, descent, quasi-nilpotent part and analytic core of operators.
In this article Weyl’s theorem and a-Weyl’s theorem on Banach spaces are related to an important property which has a leading role in local spectral theory: the single-valued extension theory. We show that if T has SVEP then Weyl’s theorem and a-Weyl’s theorem for T* are equivalent, and analogously, if T* has SVEP then Weyl’s theorem and a-Weyl’s theorem for T are equivalent. From this result we deduce that a-Weyl’s theorem holds for classes of operators for which the quasi-nilpotent part H₀(λI...
In some recent papers ([1],[2],[3],[4]) we have investigated some general spectral properties of a multiplier defined on a commutative semi-simple Banach algebra. In this paper we expose some aspects concerning the Fredholm theory of multipliers.
We give several characterizations of the improjective operators, introduced by Tarafdar, and we characterize the inessential operators among the improjective operators. It is an interesting problem whether both classes of operators coincide in general. A positive answer would provide, for example, an intrinsic characterization of the inessential operators. We give several equivalent formulations of this problem and we show that the inessential operators acting between certain pairs of Banach spaces...
A bounded operator T ∈ L(X) acting on a Banach space X is said to satisfy generalized Weyl's theorem if the complement in the spectrum of the B-Weyl spectrum is the set of all eigenvalues which are isolated points of the spectrum. We prove that generalized Weyl's theorem holds for several classes of operators, extending previous results of Istrăţescu and Curto-Han. We also consider the preservation of generalized Weyl's theorem between two operators T ∈ L(X), S ∈ L(Y) intertwined or asymptotically...
A bounded operator T defined on a Banach space is said to be polaroid if every isolated point of the spectrum is a pole of the resolvent. The "polaroid" condition is related to the conditions of being left polaroid, right polaroid, or a-polaroid. In this paper we explore all these conditions under commuting perturbations K. As a consequence, we give a general framework from which we obtain, and also extend, recent results concerning Weyl type theorems (generalized or not) for T + K, where K is an...
In this paper we investigate the relation of Weyl's theorem, of a-Weyl's theorem and the single valued extension property. In particular, we establish necessary and sufficient conditions for a Banch space operator T to satisfy Weyl's theorem or a-Weyl's theorem, in the case in which T, or its dual T*, has the single valued extension property. These results improve similar results obtained by Curto and Han, Djordjevic S. V., Duggal B. P., and Y. M. Han. The theory is exemplified in the case of multipliers...
We obtain several characterizations for the classes of Riesz and inessential operators, and apply them to extend the family of Banach spaces for which the essential incomparability class is known, solving partially a problem posed in [6].
We characterize the bounded linear operators T satisfying generalized a-Browder's theorem, or generalized a-Weyl's theorem, by means of localized SVEP, as well as by means of the quasi-nilpotent part H₀(λI - T) as λ belongs to certain sets of ℂ. In the last part we give a general framework in which generalized a-Weyl's theorem follows for several classes of operators.
In questo lavoro, motivati dalla teoria di Fredholm in spazi di Banach e dalla cosiddetta teoria degli ideali di operatori nel senso di Pietsch, viene definito un nuovo concetto di semigruppo di operatori. Questa nuova definizione include quella di molte classi di operatori già studiate in letteratura, come la classe degli operatori di semi-Fredholm, quella degli operatori tauberiani ed altre ancora. Inoltre permette un nuovo ed unificante approccio ad una serie di problemi in teoria degli operatori...
Page 1