Noncommutative 3-sphere as an example of noncommutative contact algebras
The notion of deformation quantization was introduced by F.Bayen, M.Flato et al. in [1]. The basic idea is to formally deform the pointwise commutative multiplication in the space of smooth functions on a symplectic manifold to a noncommutative associative multiplication, whose first order commutator is proportional to the Poisson bracket. It is of interest to compute this quantization for naturally occuring cases. In this paper, we discuss deformations of contact algebras and give a definition...