Rough Marcinkiewics integral operators.
We establish the L boundedness of singular integrals with kernels which belong to block spaces and are supported by subvarities.
For any n ∈ ℕ, we obtain a bound for oscillatory singular integral operators with polynomial phases on the Hardy space H¹(ℝⁿ). Our estimate, expressed in terms of the coefficients of the phase polynomial, establishes the H¹ boundedness of such operators in all dimensions when the degree of the phase polynomial is greater than one. It also subsumes a uniform boundedness result of Hu and Pan (1992) for phase polynomials which do not contain any linear terms. Furthermore, the bound is shown to be valid...
We establish sharp bounds for oscillatory singular integrals with an arbitrary real polynomial phase P. The kernels are allowed to be rough both on the unit sphere and in the radial direction. We show that the bounds grow no faster than log deg(P), which is optimal and was first obtained by Papadimitrakis and Parissis (2010) for kernels without any radial roughness. Among key ingredients of our methods are an L¹ → L² estimate and extrapolation.
Page 1