Metrics in the sphere of a C*-module
Given a unital C*-algebra and a right C*-module over , we consider the problem of finding short smooth curves in the sphere = x ∈ : 〈x, x〉 = 1. Curves in are measured considering the Finsler metric which consists of the norm of at each tangent space of . The initial value problem is solved, for the case when is a von Neumann algebra and is selfdual: for any element x 0 ∈ and any tangent vector ν at x 0, there exists a curve γ(t) = e tZ(x 0), Z ∈ , Z* = −Z and ∥Z∥ ≤ π, such...