The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 9 of 9

Showing per page

Order by Relevance | Title | Year of publication

On the insertion of Darboux functions

Aleksander Maliszewski — 1998

Fundamenta Mathematicae

The main goal of this paper is to characterize the family of all functions f which satisfy the following condition: whenever g is a Darboux function and f < g on ℝ there is a Darboux function h such that f < h < g on ℝ.

Separating sets by Darboux-like functions

Aleksander Maliszewski — 2002

Fundamenta Mathematicae

We consider the following problem: Characterize the pairs ⟨A,B⟩ of subsets of ℝ which can be separated by a function from a given class, i.e., for which there exists a function f from that class such that f = 0 on A and f = 1 on B (the classical separation property) or f < 0 on A and f > 0 on B (a new separation property).

On theorems of Pu & Pu and Grande

Aleksander Maliszewski — 1996

Mathematica Bohemica

Given a finite family of cliquish functions, , we can find a Lebesgue function α such that f + α is Darboux and quasi-continuous for every f . This theorem is a generalization both of the theorem by H. W. Pu H. H. Pu and of the theorem by Z. Grande.

Page 1

Download Results (CSV)