The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
A coloring of a graph G is an acyclic coloring if the union of any two color classes induces a forest. It is proved that the acyclic chromatic number of direct product of two trees T₁ and T₂ equals min{Δ(T₁) + 1, Δ(T₂) + 1}. We also prove that the acyclic chromatic number of direct product of two complete graphs Kₘ and Kₙ is mn-m-2, where m ≥ n ≥ 4. Several bounds for the acyclic chromatic number of direct products are given and in connection to this some questions are raised.
The periphery graph of a median graph is the intersection graph of its peripheral subgraphs. We show that every graph without a universal vertex can be realized as the periphery graph of a median graph. We characterize those median graphs whose periphery graph is the join of two graphs and show that they are precisely Cartesian products of median graphs. Path-like median graphs are introduced as the graphs whose periphery graph has independence number 2, and it is proved that there are path-like...
Download Results (CSV)