Decomposing and twisting bisectorial operators
Bisectorial operators play an important role since exactly these operators lead to a well-posed equation u'(t) = Au(t) on the entire line. The simplest example of a bisectorial operator A is obtained by taking the direct sum of an invertible generator of a bounded holomorphic semigroup and the negative of such an operator. Our main result shows that each bisectorial operator A is of this form, if we allow a more general notion of direct sum defined by an unbounded closed projection. As a consequence...