In this note we present a simple proof of a theorem of Hornblower which characterizes those functions analytic in the open unit disk having asymptotic values at a dense set in the boundary. Our method is based on a kind of ∂-mollification and may be of use in other problems as well.
The first author showed in [18] that the Hilbert transform lies in the closed convex hull of dyadic singular operators - so called dyadic shifts. We show here that the same is true in any Rn - the Riesz transforms can be obtained as the results of averaging of dyadic shifts. The goal of this paper is almost entirely methodological: we simplify the previous approach, rather than presenting the new one.
[Proceedings of the 6th International Conference on...
Download Results (CSV)