Define for a smooth compact hypersurface of its crumpleness as the ratio , where is the distance from to its central set. (In other words, is the maximal radius of an open non-selfintersecting tube around in
We prove that any -dimensional non-singular compact algebraic hypersurface of degree is rigidly isotopic to an algebraic hypersurface of degree and of crumpleness . Here , depend only on , and rigid isotopy means an...
In this paper we present two upper bounds on the length of a shortest closed
geodesic on compact Riemannian manifolds. The first upper bound depends on an upper
bound on sectional curvature and an upper bound on the volume of the manifold. The second upper bound will be given in terms of a lower bound on sectional curvature, an upper bound on the diameter and a lower bound on the volume. The related questions that will also be studied are the following: given a contractible
-dimensional sphere...
Download Results (CSV)