The Hurwitz determinants and the signatures of irreducible representations of simple real Lie algebras
The paper deals with the real classical Lie algebras and their finite dimensional irreducible representations. Signature formulae for Hermitian forms invariant relative to these representations are considered. It is possible to associate with the irreducible representation a Hurwitz matrix of special kind. So the calculation of the signatures is reduced to the calculation of Hurwitz determinants. Hence it is possible to use the Routh algorithm for the calculation.