This note relates to bounds on the chromatic number χ(ℝn) of the Euclidean space, which is the minimum number of colors needed to color all the points in ℝn so that any two points at the distance 1 receive different colors. In [6] a sequence of graphs Gn in ℝn was introduced showing that . For many years, this bound has been remaining the best known bound for the chromatic numbers of some lowdimensional spaces. Here we prove that and find an exact formula for the chromatic number in the case of...
We show that an n-vertex hypergraph with no r-regular subgraphs has at most 2n−1+r−2 edges. We conjecture that if n > r, then every n-vertex hypergraph with no r-regular subgraphs having the maximum number of edges contains a full star, that is, 2n−1 distinct edges containing a given vertex. We prove this conjecture for n ≥ 425. The condition that n > r cannot be weakened.
Chvátal’s Condition is a sufficient condition for a spanning cycle in an n-vertex graph. The condition is that when the vertex degrees are d₁, ...,dₙ in nondecreasing order, i < n/2 implies that or . We prove that this condition cannot hold in both a graph and its complement, and we raise the problem of finding its asymptotic probability in the random graph with edge probability 1/2.
W. He et al. showed that a planar graph not containing 4-cycles can be decomposed into a forest and a graph with maximum degree at most 7. This degree restriction was improved to 6 by Borodin et al. We further lower this bound to 5 and show that it cannot be improved to 3.
Download Results (CSV)