The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 2 of 2

Showing per page

Order by Relevance | Title | Year of publication

Exponential convergence of quadrature for integral operators with Gevrey kernels

Alexey ChernovTobias von PetersdorffChristoph Schwab — 2011

ESAIM: Mathematical Modelling and Numerical Analysis

Galerkin discretizations of integral equations in d require the evaluation of integrals I = S ( 1 ) S ( 2 ) g ( x , y ) d y d x where , are -simplices and has a singularity at = . We assume that is Gevrey smooth for and satisfies bounds for the derivatives which allow algebraic singularities at = . This holds for kernel functions commonly occurring in integral equations. We construct a family of quadrature rules 𝒬 N using function evaluations of which achieves exponential...

Exponential convergence of quadrature for integral operators with Gevrey kernels

Alexey ChernovTobias von PetersdorffChristoph Schwab — 2011

ESAIM: Mathematical Modelling and Numerical Analysis

Galerkin discretizations of integral equations in d require the evaluation of integrals I = S ( 1 ) S ( 2 ) g ( x , y ) d y d x where , are -simplices and has a singularity at = . We assume that is Gevrey smooth for and satisfies bounds for the derivatives which allow algebraic singularities at = . This holds for kernel functions commonly occurring in integral equations. We construct a family of quadrature rules 𝒬 N using function evaluations of which achieves exponential...

Page 1

Download Results (CSV)