Arithmetic Characterization of Algebraic Number Fields with Small Class Numbers.
We construct an uncountable set of strong automorphisms of the Witt ring of a global field.
Let K be a number field. Assume that the 2-rank of the ideal class group of K is equal to the 2-rank of the narrow ideal class group of K. Moreover, assume K has a unique dyadic prime and the class of is a square in the ideal class group of K. We prove that if ₁,...,ₙ are finite primes of K such that ∙ the class of is a square in the ideal class group of K for every i ∈ 1,...,n, ∙ -1 is a local square at for every nondyadic , then ₁,...,ₙ is the wild set of some self-equivalence of the field...
Let ℓ > 2 be a prime number. Let K be a number field containing a unique ℓ-adic prime and assume that its class is an ℓth power in the class group CK. The main theorem of the paper gives a sufficient condition for a finite set of primes of K to be the wild set of some Hilbert self-equivalence of K of degree ℓ.
Page 1