Weighted extended mean values
The author generalizes Stolarsky's Extended Mean Values to a four-parameter family of means F(r,s;a,b;x,y) = E(r,s;ax,by)/E(r,s;a,b) and investigates their monotonicity properties.
The author generalizes Stolarsky's Extended Mean Values to a four-parameter family of means F(r,s;a,b;x,y) = E(r,s;ax,by)/E(r,s;a,b) and investigates their monotonicity properties.
We provide a set of optimal estimates of the form (1-μ)/𝓐(x,y) + μ/ℳ (x,y) ≤ 1/ℬ(x,y) ≤ (1-ν)/𝓐(x,y) + ν/ℳ (x,y) where 𝓐 < ℬ are two of the Seiffert means L,P,M,T, while ℳ is another mean greater than the two.
The author gives a new simple proof of monotonicity of the generalized extended mean values introduced by F. Qi.
Page 1