Currently displaying 1 – 1 of 1

Showing per page

Order by Relevance | Title | Year of publication

Cohomological dimension filtration and annihilators of top local cohomology modules

Ali AtazadehMonireh SedghiReza Naghipour — 2015

Colloquium Mathematicae

Let denote an ideal in a Noetherian ring R, and M a finitely generated R-module. We introduce the concept of the cohomological dimension filtration = M i i = 0 c , where c = cd(,M) and M i denotes the largest submodule of M such that c d ( , M i ) i . Some properties of this filtration are investigated. In particular, if (R,) is local and c = dim M, we are able to determine the annihilator of the top local cohomology module H c ( M ) , namely A n n R ( H c ( M ) ) = A n n R ( M / M c - 1 ) . As a consequence, there exists an ideal of R such that A n n R ( H c ( M ) ) = A n n R ( M / H ( M ) ) . This generalizes the main results...

Page 1

Download Results (CSV)