The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Let T denote a completion of ZF. We are interested in the number μ(T) of isomorphism types of countable well-founded models of T. Given any countable order type τ, we are also interested in the number μ(T,τ) of isomorphism types of countable models of T whose ordinals have order type τ. We prove:
(1) Suppose ZFC has an uncountable well-founded model and . There is some completion T of ZF such that μ(T) = κ.
(2) If α <ω₁ and μ(T,α) > ℵ₀, then .
(3) If α < ω₁ and T ⊢ V ≠ OD, then .
(4)...
We establish the following model-theoretic characterization of the fragment IΔ₀ + Exp + BΣ₁ of Peano arithmetic in terms of fixed points of automorphisms of models of bounded arithmetic (the fragment IΔ₀ of Peano arithmetic with induction limited to Δ₀-formulae).
Theorem A. The following two conditions are equivalent for a countable model of the language of arithmetic:
(a) satisfies IΔ₀ + BΣ₁ + Exp;
(b) for some nontrivial automorphism j of an end extension of that satisfies IΔ₀.
Here is the...
Motivated by Leibniz’s thesis on the identity of indiscernibles, Mycielski introduced a set-theoretic axiom, here dubbed the Leibniz-Mycielski axiom LM, which asserts that for each pair of distinct sets x and y there exists an ordinal α exceeding the ranks of x and y, and a formula φ(v), such that satisfies φ(x) ∧¬ φ(y).
We examine the relationship between LM and some other axioms of set theory. Our principal results are as follows:
1. In the presence of ZF, the following are equivalent:
(a) LM.
(b)...
Download Results (CSV)