Quasi-polynomial mixing of the 2D stochastic Ising model with “plus” boundary up to criticality
We considerably improve upon the recent result of [37] on the mixing time of Glauber dynamics for the 2D Ising model in a box of side at low temperature and with random boundary conditions whose distribution stochastically dominates the extremal plus phase. An important special case is when is concentrated on the homogeneous all-plus configuration, where the mixing time is conjectured to be polynomial in . In [37] it was shown that for a large enough inverse-temperature and any there...