The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 12 of 12

Showing per page

Order by Relevance | Title | Year of publication

Sign changes of error terms related to arithmetical functions

Paulo J. Almeida — 2007

Journal de Théorie des Nombres de Bordeaux

Let H ( x ) = n x φ ( n ) n - 6 π 2 x . Motivated by a conjecture of Erdös, Lau developed a new method and proved that # { n T : H ( n ) H ( n + 1 ) < 0 } T . We consider arithmetical functions f ( n ) = d n b d d whose summation can be expressed as n x f ( n ) = α x + P ( log ( x ) ) + E ( x ) , where P ( x ) is a polynomial, E ( x ) = - n y ( x ) b n n ψ x n + o ( 1 ) and ψ ( x ) = x - x - 1 / 2 . We generalize Lau’s method and prove results about the number of sign changes for these error terms.

Page 1

Download Results (CSV)