The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We show that, if a a finite-dimensional operator space E is such that X contains E C-completely isomorphically whenever X** contains E completely isometrically, then E is -completely isomorphic to Rₘ ⊕ Cₙ for some n, m ∈ ℕ ∪ 0. The converse is also true: if X** contains Rₘ ⊕ Cₙ λ-completely isomorphically, then X contains Rₘ ⊕ Cₙ (2λ + ε)-completely isomorphically for any ε > 0.
Download Results (CSV)