The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We obtain short and unified new proofs of two recent characterizations of hyperellipticity given by Maskit (2000) and Schaller (2000), as well as a way of establishing a relation between them.
Sea X una superficie de Riemann de género g. Diremos que la superficie X es elíptica-hiperelíptica si admite una involución conforme h de modo que X/〈h〉 tenga género uno. La involución h se llama entonces involución elíptica-hiperelíptica. Si g > 5 entonces la involución h es única, ver [1]. Llamamos simetría a toda involución anticonforme de X. Sea Aut(X) el grupo de automorfismos conformes y anticonformes de X y σ, τ dos simetrías de X con puntos fijos y tales que {σ, hσ} y {τ, hτ} no son...
Download Results (CSV)