Currently displaying 1 – 4 of 4

Showing per page

Order by Relevance | Title | Year of publication

Two-scale FEM for homogenization problems

Ana-Maria MatacheChristoph Schwab — 2002

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

The convergence of a two-scale FEM for elliptic problems in divergence form with coefficients and geometries oscillating at length scale ε 1 is analyzed. Full elliptic regularity independent of ε is shown when the solution is viewed as mapping from the slow into the fast scale. Two-scale FE spaces which are able to resolve the ε scale of the solution with work independent of ε and without analytical homogenization are introduced. Robust in ε error estimates for the two-scale FE spaces are proved....

Two-scale FEM for homogenization problems

Ana-Maria MatacheChristoph Schwab — 2010

ESAIM: Mathematical Modelling and Numerical Analysis

The convergence of a two-scale FEM for elliptic problems in divergence form with coefficients and geometries oscillating at length scale ε << 1 is analyzed. Full elliptic regularity independent of is shown when the solution is viewed as mapping from the slow into the fast scale. Two-scale FE spaces which are able to resolve the scale of the solution with work independent of and without analytical homogenization are introduced. Robust in error estimates for the two-scale FE spaces are...

Fast deterministic pricing of options on Lévy driven assets

Ana-Maria MatacheTobias Von PetersdorffChristoph Schwab — 2004

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Arbitrage-free prices u of European contracts on risky assets whose log-returns are modelled by Lévy processes satisfy a parabolic partial integro-differential equation (PIDE) t u + 𝒜 [ u ] = 0 . This PIDE is localized to bounded domains and the error due to this localization is estimated. The localized PIDE is discretized by the θ -scheme in time and a wavelet Galerkin method with N degrees of freedom in log-price space. The dense matrix for 𝒜 can be replaced by a sparse matrix in the wavelet basis, and the linear...

Fast deterministic pricing of options on Lévy driven assets

Ana-Maria MatacheTobias von PetersdorffChristoph Schwab — 2010

ESAIM: Mathematical Modelling and Numerical Analysis

Arbitrage-free prices of European contracts on risky assets whose log-returns are modelled by Lévy processes satisfy a parabolic partial integro-differential equation (PIDE) t u + 𝒜 [ u ] = 0 . This PIDE is localized to bounded domains and the error due to this localization is estimated. The localized PIDE is discretized by the -scheme in time and a wavelet Galerkin method with degrees of freedom in log-price space. The dense matrix for 𝒜 can be replaced by a sparse matrix in the wavelet basis, and the linear...

Page 1

Download Results (CSV)