Reproducing properties and -estimates for Bergman projections in Siegel domains of type II
On homogeneous Siegel domains of type II, we prove that under certain conditions, the subspace of a weighted -space (0 < p < ∞) consisting of holomorphic functions is reproduced by a weighted Bergman kernel. We also obtain some -estimates for weighted Bergman projections. The proofs rely on a generalization of the Plancherel-Gindikin formula for the Bergman space .