The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
On homogeneous Siegel domains of type II, we prove that under certain conditions, the subspace of a weighted -space (0 < p < ∞) consisting of holomorphic functions is reproduced by a weighted Bergman kernel. We also obtain some -estimates for weighted Bergman projections. The proofs rely on a generalization of the Plancherel-Gindikin formula for the Bergman space .
Download Results (CSV)