The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Let M² denote a Minkowski plane, i.e., an affine plane whose metric is a gauge induced by a compact convex figure B which, as a unit circle of M², is not necessarily centered at the origin. Hence the self-perimeter of B has two values depending on the orientation of measuring it. We prove that this self-perimeter of B is bounded from above by the four-fold self-diameter of B. In addition, we derive a related non-trivial result on Minkowski planes whose unit circles are quadrangles.
Download Results (CSV)