We consider canonical fibrations and algebraic geometric structures on homogeneous CR manifolds, in connection with the notion of CR algebra. We give applications to the classifications of left invariant CR structures on semisimple Lie groups and of CR-symmetric structures on complete flag varieties.
We prove a subelliptic estimate for systems of complex vector fields under some assumptions that generalize the essential pseudoconcavity for CR manifolds, that was first introduced by two of the authors, and the Hörmander’s bracket condition for real vector fields.
Applications are given to prove the hypoellipticity of first order systems and second order partial differential operators.
Finally we describe a class of compact homogeneous CR manifolds for which the distribution...
Download Results (CSV)