The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 2 of 2

Showing per page

Order by Relevance | Title | Year of publication

2 - ( n 2 , 2 n , 2 n - 1 ) designs obtained from affine planes

Andrea Caggegi — 2006

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

The simple incidence structure 𝒟 ( 𝒜 , 2 ) formed by points and unordered pairs of distinct parallel lines of a finite affine plane 𝒜 = ( 𝒫 , ) of order n > 2 is a 2 - ( n 2 , 2 n , 2 n - 1 ) design. If n = 3 , 𝒟 ( 𝒜 , 2 ) is the complementary design of 𝒜 . If n = 4 , 𝒟 ( 𝒜 , 2 ) is isomorphic to the geometric design A G 3 ( 4 , 2 ) (see [2; Theorem 1.2]). In this paper we give necessary and sufficient conditions for a 2 - ( n 2 , 2 n , 2 n - 1 ) design to be of the form 𝒟 ( 𝒜 , 2 ) for some finite affine plane 𝒜 of order n > 4 . As a consequence we obtain a characterization of small designs 𝒟 ( 𝒜 , 2 ) .

Some Additive 2 - ( v , 5 , λ ) Designs

Andrea Caggegi — 2015

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

Given a finite additive abelian group G and an integer k , with 3 k | G | , denote by 𝒟 k ( G ) the simple incidence structure whose point-set is G and whose blocks are the k -subsets C = { c 1 , c 2 , , c k } of G such that c 1 + c 2 + + c k = 0 . It is known (see [Caggegi, A., Di Bartolo, A., Falcone, G.: Boolean 2-designs and the embedding of a 2-design in a group arxiv 0806.3433v2, (2008), 1–8.]) that 𝒟 k ( G ) is a 2-design, if G is an elementary abelian p -group with p a prime divisor of k . From [Caggegi, A., Falcone, G., Pavone, M.: On the additivity of block...

Page 1

Download Results (CSV)