The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 8 of 8

Showing per page

Order by Relevance | Title | Year of publication

A linear programming based analysis of the CP-rank of completely positive matrices

Yingbo LiAnton KummertAndreas Frommer — 2004

International Journal of Applied Mathematics and Computer Science

A real matrix A is said to be completely positive (CP) if it can be decomposed as A = BB^T, where the real matrix B has exclusively non-negative entries. Let k be the rank of A and Φ_k the least possible number of columns of the matrix B, the so-called completely positive rank (cp-rank) of A. The present work is devoted to a study of a general upper bound for the cp-rank of an arbitrary completely positive matrix A and its dependence on the ordinary rank k. This general upper bound of the cp-rank...

Page 1

Download Results (CSV)