The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 1 of 1

Showing per page

Order by Relevance | Title | Year of publication

Notes on prequantization of moduli of G -bundles with connection on Riemann surfaces

Andres Rodriguez — 2004

Annales mathématiques Blaise Pascal

Let 𝒳 S be a smooth proper family of complex curves (i.e. family of Riemann surfaces), and a G -bundle over 𝒳 with connection along the fibres 𝒳 S . We construct a line bundle with connection ( , ) on S (also in cases when the connection on has regular singularities). We discuss the resulting ( , ) mainly in the case G = * . For instance when S is the moduli space of line bundles with connection over a Riemann surface X , 𝒳 = X × S , and is the Poincaré bundle over 𝒳 , we show that ( , ) provides a prequantization of S .

Page 1

Download Results (CSV)