The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We prove that generating relations between the elements [r] = r²-r of a commutative ring are the following: [r+s] = [r]+[s]+rs[2] and [rs] = r²[s]+s[r].
For any positive power n of a prime p we find a complete set of generating relations between the elements [r] = rⁿ - r and p·1 of a unitary commutative ring.
We find complete sets of generating relations between the elements [r] = rⁿ - r for and for n = 3. One of these relations is the n-derivation property [rs] = rⁿ[s] + s[r], r,s ∈ R.
We present some classification results for n-derivations over certain commutative rings.
Download Results (CSV)