Geometric objects with finitely determined germs
This paper is concerned with the problem of divisibility of vector fields with respect to the Lie bracket [X,Y]. We deal with the local divisibility. The methods used are based on various estimates, in particular those concerning prolongations of dynamical systems. A generalization to polynomials of the adjoint operator (X) is given.
The study of diffeomorphism group actions requires methods of infinite dimensional analysis. Really convenient tools can be found in the Frölicher - Kriegl - Michor differentiation theory and its geometrical aspects. In terms of it we develop the calculus of various types of one parameter diffeomorphism groups in infinite dimensional spaces with smooth structure. Some spectral properties of the derivative of exponential mapping for manifolds are given.
Page 1