Let us call a graph G(H;k) vertex stable if it contains a subgraph H after removing any of its k vertices. In this paper we are interested in finding the (respectively ) vertex stable graphs with minimum size.
A graph G is called (H;k)-vertex stable if G contains a subgraph isomorphic to H ever after removing any of its k vertices. Q(H;k) denotes the minimum size among the sizes of all (H;k)-vertex stable graphs. In this paper we complete the characterization of -vertex stable graphs with minimum size. Namely, we prove that for m ≥ 2 and n ≥ m+2, and as well as are the only -vertex stable graphs with minimum size, confirming the conjecture of Dudek and Zwonek.
A graph G is said to be H-saturated if G is H-free i.e., (G has no subgraph isomorphic to H) and adding any new edge to G creates a copy of H in G. In 1986 L. Kászonyi and Zs. Tuza considered the following problem: for given m and n find the minimum size sat(n;Pₘ) of Pₘ-saturated graph of order n. They gave the number sat(n;Pₘ) for n big enough. We deal with similar problem for bipartite graphs.
Let us call a G (H,k) graph vertex stable if it contains a subgraph H ever after removing any of its k vertices. By Q(H,k) we will denote the minimum size of an (H,k) vertex stable graph. In this paper, we are interested in finding Q(₃,k), Q(₄,k), and Q(Kₛ,k).
Download Results (CSV)