The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Let us call a graph G(H;k) vertex stable if it contains a subgraph H after removing any of its k vertices. In this paper we are interested in finding the (respectively ) vertex stable graphs with minimum size.
A graph G is called (H;k)-vertex stable if G contains a subgraph isomorphic to H ever after removing any of its k vertices. Q(H;k) denotes the minimum size among the sizes of all (H;k)-vertex stable graphs. In this paper we complete the characterization of -vertex stable graphs with minimum size. Namely, we prove that for m ≥ 2 and n ≥ m+2, and as well as are the only -vertex stable graphs with minimum size, confirming the conjecture of Dudek and Zwonek.
A graph G is said to be H-saturated if G is H-free i.e., (G has no subgraph isomorphic to H) and adding any new edge to G creates a copy of H in G. In 1986 L. Kászonyi and Zs. Tuza considered the following problem: for given m and n find the minimum size sat(n;Pₘ) of Pₘ-saturated graph of order n. They gave the number sat(n;Pₘ) for n big enough. We deal with similar problem for bipartite graphs.
Let us call a G (H,k) graph vertex stable if it contains a subgraph H ever after removing any of its k vertices. By Q(H,k) we will denote the minimum size of an (H,k) vertex stable graph. In this paper, we are interested in finding Q(₃,k), Q(₄,k), and Q(Kₛ,k).
Download Results (CSV)