The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 3 of 3

Showing per page

Order by Relevance | Title | Year of publication

Markoff numbers and ambiguous classes

Anitha Srinivasan — 2009

Journal de Théorie des Nombres de Bordeaux

The Markoff conjecture states that given a positive integer c , there is at most one triple ( a , b , c ) of positive integers with a b c that satisfies the equation a 2 + b 2 + c 2 = 3 a b c . The conjecture is known to be true when c is a prime power or two times a prime power. We present an elementary proof of this result. We also show that if in the class group of forms of discriminant d = 9 c 2 - 4 , every ambiguous form in the principal genus corresponds to a divisor of 3 c - 2 , then the conjecture is true. As a result, we obtain criteria in terms of...

On fundamental solutions of binary quadratic form equations

Keith R. MatthewsJohn P. RobertsonAnitha Srinivasan — 2015

Acta Arithmetica

We show that, with suitable modification, the upper bound estimates of Stolt for the fundamental integer solutions of the Diophantine equation Au²+Buv+Cv²=N, where A>0, N≠0 and B²-4AC is positive and nonsquare, in fact characterize the fundamental solutions. As a corollary, we get a corresponding result for the equation u²-dv²=N, where d is positive and nonsquare, in which case the upper bound estimates were obtained by Nagell and Chebyshev.

Page 1

Download Results (CSV)