The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Here we introduce the notion of strong quasi k-ideals of a semiring in SL⁺ and characterize the semirings that are distributive lattices of t-k-simple(t-k-Archimedean) subsemirings by their strong quasi k-ideals. A quasi k-ideal Q is strong if it is an intersection of a left k-ideal and a right k-ideal. A semiring S in SL⁺ is a distributive lattice of t-k-simple semirings if and only if every strong quasi k-ideal is a completely semiprime k-ideal of S. Again S is a distributive lattice of t-k-Archimedean...
We introduce the k-radicals of Green's relations in semirings with a semilattice additive reduct, introduce the notion of left k-regular (right k-regular) semirings and characterize these semirings by k-radicals of Green's relations. We also characterize the semirings which are distributive lattices of left k-simple subsemirings by k-radicals of Green's relations.
An element of an ordered semigroup S is called an ordered idempotent if e ≤ e². Here we characterize the subsemigroup
is also regular. If S is a regular ordered semigroup generated by its ordered idempotents then every ideal of S is generated as a subsemigroup by ordered idempotents.
Let S be a semiring whose additive reduct (S,+) is an inverse semigroup. The relations θ and k, induced by tr and ker (resp.), are congruences on the lattice C(S) of all congruences on S. For ρ ∈ C(S), we have introduced four congruences and on S and showed that and . Different properties of ρθ and ρκ have been considered here. A congruence ρ on S is a Clifford congruence if and only if is a distributive lattice congruence and is a skew-ring congruence on S. If η (σ) is the least distributive...
Download Results (CSV)