Here we introduce the notion of strong quasi k-ideals of a semiring in SL⁺ and characterize the semirings that are distributive lattices of t-k-simple(t-k-Archimedean) subsemirings by their strong quasi k-ideals. A quasi k-ideal Q is strong if it is an intersection of a left k-ideal and a right k-ideal. A semiring S in SL⁺ is a distributive lattice of t-k-simple semirings if and only if every strong quasi k-ideal is a completely semiprime k-ideal of S. Again S is a distributive lattice of t-k-Archimedean...
We introduce the k-radicals of Green's relations in semirings with a semilattice additive reduct, introduce the notion of left k-regular (right k-regular) semirings and characterize these semirings by k-radicals of Green's relations. We also characterize the semirings which are distributive lattices of left k-simple subsemirings by k-radicals of Green's relations.
An element of an ordered semigroup S is called an ordered idempotent if e ≤ e². Here we characterize the subsemigroup
is also regular. If S is a regular ordered semigroup generated by its ordered idempotents then every ideal of S is generated as a subsemigroup by ordered idempotents.
Let S be a semiring whose additive reduct (S,+) is an inverse semigroup. The relations θ and k, induced by tr and ker (resp.), are congruences on the lattice C(S) of all congruences on S. For ρ ∈ C(S), we have introduced four congruences and on S and showed that and . Different properties of ρθ and ρκ have been considered here. A congruence ρ on S is a Clifford congruence if and only if is a distributive lattice congruence and is a skew-ring congruence on S. If η (σ) is the least distributive...
Download Results (CSV)