The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We deal with two classes of mixed metric 3-structures, namely the mixed 3-Sasakian structures and the mixed metric 3-contact structures. First, we study some properties of the curvature of mixed 3-Sasakian structures. Then we prove the identity between the class of mixed 3-Sasakian structures and the class of mixed metric 3-contact structures.
We prove that a CR-integrable almost -manifold admits a canonical linear connection, which is a natural generalization of the Tanaka–Webster connection of a pseudo-hermitian structure on a strongly pseudoconvex CR manifold of hypersurface type. Hence a CR-integrable almost -structure on a manifold is canonically interpreted as a reductive Cartan geometry, which is torsion free if and only if the almost -structure is normal. Contrary to the CR-codimension one case, we exhibit examples of non normal...
Download Results (CSV)