On Levi subgroups and the Levi decomposition for groups definable in o-minimal structures
We study analogues of the notions from Lie theory of Levi subgroup and Levi decomposition, in the case of groups G definable in an o-minimal expansion of a real closed field. With a rather strong definition of ind-definable semisimple subgroup, we prove that G has a unique maximal ind-definable semisimple subgroup S, up to conjugacy, and that G = R· S where R is the solvable radical of G. We also prove that any semisimple subalgebra of the Lie algebra of G corresponds to a unique ind-definable semisimple...