The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We present a convergence analysis of a cell-based finite volume (FV)
discretization scheme applied to a problem of control in the
coefficients of a generalized Laplace equation modelling, for
example, a steady state heat conduction.
Such problems arise in applications dealing with geometric optimal
design, in particular shape and topology optimization, and are most
often solved numerically utilizing a finite element approach.
Within the FV framework for control in the coefficients problems
...
We present a convergence analysis of a cell-based finite volume (FV)
discretization scheme applied to a problem of control in the
coefficients of a generalized Laplace equation modelling, for
example, a steady state heat conduction.
Such problems arise in applications dealing with geometric optimal
design, in particular shape and topology optimization, and are most
often solved numerically utilizing a finite element approach.
Within the FV framework for control in the coefficients problems
...
Download Results (CSV)