On the index of nonlocal elliptic operators for compact Lie groups
We consider a class of nonlocal operators associated with a compact Lie group G acting on a smooth manifold. A notion of symbol of such operators is introduced and an index formula for elliptic elements is obtained. The symbol in this situation is an element of a noncommutative algebra (crossed product by G) and to obtain an index formula, we define the Chern character for this algebra in the framework of noncommutative geometry.