The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 5 of 5

Showing per page

Order by Relevance | Title | Year of publication

Global Lipschitz Continuity of Solutions to Parameterized Variational Inequalities

Antonino MaugeriLaura Scrimali — 2009

Bollettino dell'Unione Matematica Italiana

The question of Lipschitz continuity of solutions to parameterized variational inequalities with perturbed constraint sets is considered. Under the sole Lipschitz continuity assumption on data, a Lipschitz continuity result is proved which, in particular, holds for variational inequalities modeling evolutionary network equilibrium problems. Moreover, in view of real-life applications, a long-term memory is introduced and the corresponding variational inequality model is discussed.

Partial Hölder continuity for quasilinear parabolic systems of higher order with strictly controlled growth

Mario MarinoAntonino Maugeri — 1984

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Sfruttando i risultati di [1], si prova che le derivate spaziali D α u di ordine | α | con | α | < m - 1 delle soluzioni in Q di un sistema parabolico quasilineare di ordine 2 m con andamenti strettamente controllati, sono parzialmente hölderiane in Q con esponente di hölderianità decrescente al crescere di | α | .

Partial Hölder continuity for quasilinear parabolic systems of higher order with strictly controlled growth

Mario MarinoAntonino Maugeri — 1984

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti

Sfruttando i risultati di [1], si prova che le derivate spaziali D α u di ordine | α | con | α | < m - 1 delle soluzioni in Q di un sistema parabolico quasilineare di ordine 2 m con andamenti strettamente controllati, sono parzialmente hölderiane in Q con esponente di hölderianità decrescente al crescere di | α | .

Page 1

Download Results (CSV)