The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 1 of 1

Showing per page

Order by Relevance | Title | Year of publication

Topological characterization of the small cardinal i

Antonio de Padua Franco-Filho — 2003

Commentationes Mathematicae Universitatis Carolinae

We show that the small cardinal number i = min { | 𝒜 | : 𝒜 is a maximal independent family} has the following topological characterization: i = min { κ c : { 0 , 1 } κ has a dense irresolvable countable subspace}, where { 0 , 1 } κ denotes the Cantor cube of weight κ . As a consequence of this result, we have that the Cantor cube of weight c has a dense countable submaximal subspace, if we assume (ZFC plus i = c ), or if we work in the Bell-Kunen model, where i = 1 and c = ω 1 .

Page 1

Download Results (CSV)